高一物理试题

2019.1

本试卷分选择题和非选择题两部分,满分100分,考试用时90分钟。

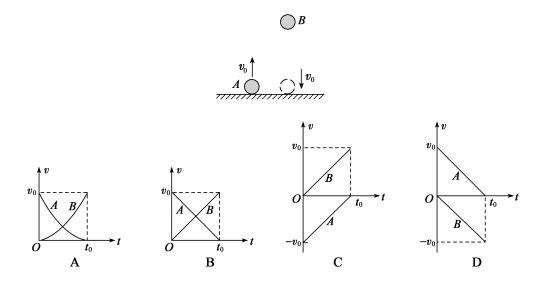
注意事项:

- 1. 答卷前, 考生务必用黑色字迹的钢笔或签字笔将自己的姓名、考号填写在答题卡的相应位置。
- 2. 选择题每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案。
 - 3. 考生必须保持答题卡的整洁,考试结束后,将答题卡收回。

第 [卷(共 48 分)

- 一、选择题(本题共 12 小题,每小题 4 分,共 48 分。在每小题给出的四个选项中,第 $1\sim6$ 题只有一项符合题目要求,第 $7\sim12$ 题有多项符合题目要求。全部选对的得 4 分,选对但不全的得 2 分,有选错或不答的得 0 分。)
- 1. 下面说法中错误的是
 - A. 物体运动状态发生变化,一定有力作用在该物体上
 - B. 物体速度变化的方向与它受到的合外力的方向总是一致的
 - C. 物体受恒定外力作用,它的加速度也恒定
 - D. 力是维持物体运动的原因
- 2. 某人驾车从德州到潍坊用时 4 h,车上里程表的示数增加了 300 km,根据地图上的相关数据得到出发地到目的地的直线距离为 240 km,则整个过程中汽车的位移大小和平均速度的大小分别为

A. 240 km 60 km/h


B. 240 km 75 km/h

C. 300 km 60 km/h

D. 300 km 75 km/h

高一物理试题 第1页(共6页)

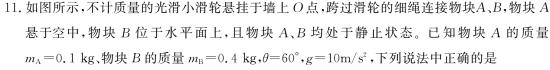
- 3. 下列说法正确的是
 - A. 同一物体沿同一水平面滑动,速度较大时停下来的时间较长,说明惯性与速度有关
 - B. 各种小型车辆乘员(包括司机)必须系好安全带,这样可以避免因人的惯性而造成的 伤害
 - C. "强弩之末,势不能穿鲁缟也",这说明箭的惯性减小了
 - D. 在国际单位制中,三个力学基本物理量分别是长度、力、时间
- 4. 如图所示,物体 A 以速率 v_0 从地面竖直上抛,同时物体 B 从某高处由静止自由下落,经过时间 t_0 物体 B 正好以速率 v_0 落地。规定竖直向上为正方向,不计空气阻力,两物体在时间 t_0 内的 v-t 图象正确的是

- 5. 如图所示,板擦由于磁性的吸引而紧压在竖直的黑板上静止不动,下列说法中正确的是
 - A. 黑板对板擦的弹力和板擦对黑板的弹力是一对平衡力
 - B. 板擦的重力跟板擦对黑板的静摩擦力是一对平衡力
 - C. 黑板和板擦之间存在三对作用力与反作用力
 - D. 板擦的重力和黑板对板擦的静摩擦力是一对作用力与反作用力
- 6. 金属小球 A 自楼顶由静止自由落下高度为 h_1 时,另一金属小球 B 自离地面高度为 h_2 处 由静止自由下落,两金属小球同时落地,不计空气阻力,则楼高为

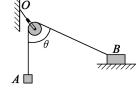
A.
$$h_1 + h_2$$

B.
$$(\sqrt{h_1} + \sqrt{h_2})^2$$

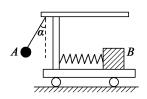
C.
$$(\sqrt{h_1} - \sqrt{h_2})^2$$


D.
$$(\sqrt{2h_1} + \sqrt{2h_2})^2$$

高一物理试题 第2页(共6页)

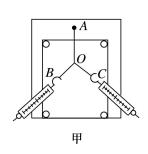

- 7. 打篮球时,运动员竖直起跳投篮的过程可分为:下蹲、蹬地、离地上升和下落四个过程,以 下说法中正确的是
 - A. 下蹲过程中运动员始终处于超重状态
- B. 下蹲过程中运动员始终处于失重状态
- C. 离地上升过程中运动员处于失重状态
- D. 下落过程中运动员处于失重状态
- 8. 一个物体受几个共点力的作用而处于静止状态,当保持其它力不变,仅使其中一个力的数 值逐渐减小到零,然后又恢复到原数值的过程中
 - A. 物体的加速度先增大后减小
 - B. 物体的加速度先增大,后反方向减小
 - C. 物体的速度一直在增大,最后达到最大
 - D. 物体最终将回到原来位置,并保持平衡状态
- 9. 如图所示,粗糙水平面上有一物块m,在水平恒力F作用下做匀速直线运动,在其正前方 固定一轻质弹簧,当物块与弹簧接触后向左运动的过程中(弹簧始终处于弹性限度内),下 列说法正确的是
 - A. 物块接触弹簧后速度一直减小

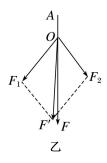
- B. 物块接触弹簧后速度先增大后减小
- C. 当弹簧被压缩到弹力等于F时,物块的加速度等于零
- D. 物块的加速度一直增大
- 10. 如图所示,一个人用双手握紧紧直放置的半圆形支架静止悬于空中,若手臂 OP,OQ 的 拉力分别是 F_P 、 F_O ,手臂OP 保持水平不动,在手臂OQ 缓慢移动到OQ'位置的过程中, 下列说法正确的是
 - A. F_P 变大
 - B. F_P 变小
 - $C. F_P$ 与 F_o 的合力始终不变
 - D. F_P 与 F_0 的合力变大



- A. 物块 A 对细绳的拉力 $F_{\tau}=1$ N
- B. 地面对 B 的弹力 F_N = 3N
- C. B 与水平面间的摩擦力 $F_f = \frac{\sqrt{3}}{2} N$

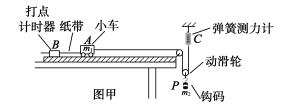
D. B 与水平面间的动摩擦因数 $\mu = \frac{\sqrt{3}}{7}$


- 12. 如图所示,在水平面上沿直线运动的小车上有一个固定的水平横杆,横杆左端悬挂着小 球A,小车底板右端放置着物块B,A、B均相对车厢静止,物块B通过一轻质弹簧与竖 杆相连,已知小球 A 的质量 $m_A=0.2$ kg、悬线与竖直方向的夹角为 $\alpha=37^{\circ}$,物块 B 的质 量 $m_R = 0.4 \text{ kg}$,物块 B 与车厢底板间无摩擦,弹簧的劲度系数为 k = 100 N/m, $(g=10 \text{ m/s}^2, \sin 37^\circ = 0.6, \cos 37^\circ = 0.8)$ 。下列判断中可能正确的是
 - A. 弹簧处于伸长状态
 - B. 弹簧处于压缩状态
 - C. 弹簧的形变量为 2.4 cm
 - D. 弹簧的形变量为 3.0 cm



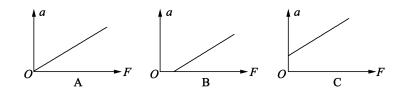
第 □ 卷(非选择题 共 52 分)

二、实验题(本题共2小题,共15分)


13. (6 分)某同学做"验证力的平行四边形定则"的实验,如图甲所示,其中 A 为固定橡皮条 的图钉,O 为橡皮条与细绳套的结点,OB 和 OC 为细绳套。图乙是在白纸上根据实验数 据作出的力的图示。

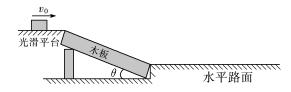
- (1)如果没有操作失误,图乙中的F = F'两力中,方向一定沿AO方向的是 "F"或"F′")。
- (2)下列说法正确的是
- A. 由于实验室没有细绳套,在进行实验时,图甲中的 OB 和 OC 可以用橡皮条代替
- B. 同一次验证过程中 O 点位置应相同
- C. 为了便于计算, 应保持图甲中的 OB 和 OC 相互垂直
- D. 拉力 F_1 和 F_2 的夹角应尽量小

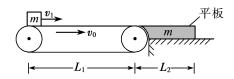
- 14. (9 分)某同学"探究加速度、力与质量关系"的实验装置如图甲所示,图中 A 为小车,质量为 m_1 ,B 为打点计时器,它们放置于一端带有定滑轮的长木板上,钩码 P 的质量为 m_2 ,C 为弹簧测力计,实验时改变 P 的质量,记录弹簧测力计的示数 F,不计滑轮质量和滑轮处的一切摩擦
 - (1)下列说法正确的是
 - A. 实验中 m_2 应远小于 m_1
 - B. 实验时应先接通电源后释放小车
 - C. 实验中应将长木板左侧适当垫高



D. 小车运动过程中测力计的示数为 $F = \frac{m_2 g}{2}$

(2)乙图是实验过程中得到的一条纸带,O、A、B、C、D 为选取的计数点,相邻的两个计数点之间有四个点未画出,各计数点到 O 点的距离分别为 8.00 cm,17.99 cm,30.00 cm,44.01 cm,若计时器的打点周期为 0.02 s,由该纸带可求出小车的加速度大小为 m/s^2 (结果保留三位有效数字)。


(3)实验操作中,该同学由于疏忽,遗漏了平衡摩擦力这一重要步骤,他测量得到的 *a*—F 图象可能是_____


- 三、计算题(本题共 3 小题,共 37 分. 解答应写出必要的文字说明、方程式和重要演算步骤. 只写出最后答案的不能得分. 有数值计算的题,答案中必须明确写出数值和单位.)
- 15. (10 分)冬天雾霾活动频繁,某天的能见度(观察者与能看见的最远目标间的距离)只有x=40 m,甲车由于故障停在路中央,乙车在雾霾中沿平直公路向甲车匀速行驶,速度为 $v_0=72 \text{ km/h}$,乙车司机的反应时间(司机从发现目标到采取实施刹车所需要的时间)为 $t_0=0.4 \text{ s}$,为避免撞上甲车,则乙车的加速度 a 至少多大?

高一物理试题 第5页(共6页)

16. (14分)如图所示,光滑平台右侧与一长为L的木板相接,木板固定,与水平地面的夹角为 θ 。现有一小滑块以初速度 v_0 从光滑平台滑上木板,恰能沿木板匀速下滑,最终停在粗糙的水平路面上。已知滑块与木板及水平路面间的动摩擦因数均相同,不计滑块在连接处速度大小的变化,重力加速度为g,求:

- (1)滑块与木板间的动摩擦因数;
- (2)滑块在水平路面上运动的位移大小;
- (3)滑块在木板和水平路面上运动的总时间。
- 17. (13 分)如图所示,传送带与平板紧靠在一起,且上表面在同一水平面内,两者长度分别为 $L_1=3$ m、 $L_2=1$ m。传送带始终以速度 $v_0=4$ m/s 向右匀速运动。现有一滑块(可视为质点)以速度 $v_1=6$ m/s 滑上传送带的左端,然后平稳地滑上平板。已知:滑块与传送带间的 动摩擦 因数 $\mu=0$. 5,滑块与平板、平板与地面间的动摩擦 因数分别为 $\mu_1=0$. 4、 $\mu_2=0$. 3,滑块、平板的质量均为 m=1 kg,g=10 m/s²。求:

- (1)滑块滑离传送带时的速度大小;
- (2)判断滑块能否离开平板,如果能离开,请计算出离开平板时的速度大小。

高一物理试题 第6页(共6页)

高一物理试题参考答案

2019.1

一、选择题(本题共 12 小题,每小题 4 分,计 48 分。多选题漏选得 2 分,错选不得分)
1. D 2. A 3. B 4. D 5. C 6. B 7. CD 8. AC 9. AD 10. BC 11. AC 12. BD
二、实验题(每空 3 分,共计 15 分)
13. $(1)F$ (2) AB
14. (1)BC (2)2. 01 (3)B
三、计算题(本题共三个小题,共计37分)
15. (10 分)
$\mathbf{m}: v_0 = 72 \text{ km/h} = 20 \text{ m/s}$
反应时间内乙车的位移: $x_1 = v_0 t_0 = 8 \text{ m}$
乙车刹车过程 $x_2 = x - x_1 = 32 \text{ m}$
$2ax_2 = 0 - v_0^2$
$a = -6.25 \text{ m/s}^2$ · · · · · · · 2 分
则乙车的加速度 a 至少为 6.25 m/s^2
16. (14 分)
解:(1)设滑块质量为 m,在木板匀速下滑时有
$mg\sin\theta = \mu mg\cos\theta$
解得 μ =tan θ ····································
(2)设滑块在水平路面上的加速度大小为 a_1 ,位移大小为 x ,有
$-\mu mg = -ma_1 \qquad \qquad 2 $
$-2a_1x = 0 - v_0^2$
解得 $x = \frac{v_0^2}{2g \tan \theta}$
(3)设滑块在木板上运动的时间为 t_1 ,在水平路面上运动的时间为 t_2 ,有
$L=v_0t_1$ ····································
$0 = v_0 - a_1 t_2$
解得 $t_{\stackrel{.}{=}} = t_1 + t_2 = \frac{L}{t_1} + \frac{v_0}{t_1 - t_2}$

高一物理试题答案 第1页(共2页)

17.(13分)

解:(1) 该有块在传达带上的加速度入小为 a, 根据午顿弗— 定律有	
$-\mu mg = -ma$	2 分
解得 $a=5 \text{ m/s}^2$	
设滑块在传送带上减速运动的位移为 x_1 ,且 $x_1 < L_1$,根据运动规律学	
$v_0^2 - v_1^2 = -2ax_1$	2 分
解得 $x_1=2 \text{ m} < L_1$ ····································	1分
得出滑块在传送带上先做匀减速运动,再做匀速运动,	
离开传送带时的速度大小为 4m/s ······	1分
(2)滑块滑上平板时,平板上下表面受到的摩擦力分别为 F_{f1} 、 F_{f2} ,根据受力分析有	
$F_{fl} = \mu_l mg = 4 \text{ N}$	1分
$F_{f2} = \mu_2 2mg = 6 \text{ N}$	1 欠
因为 $F_{/1} < F_{/2}$,所以平板保持静止。	1分
滑块在平板上一直做匀减速,其加速度大小为 a_1 ,假设能离开平板,根据牛顿第二	定律
和运动学规律有	
$-\mu_1 mg = -ma_1$	1分
$v^2 - v_0^2 = -2a_1 L_2 \cdots$	1分
解得 $v=2\sqrt{2}$ m/s ······	1分
结论:滑块能离开平板,离开平板时速度的大小为 $2\sqrt{2} \text{ m/s}$ 。	1 分