福外高级中学18－19学年第二学期期末考试（高二）

安科数学

全卷满分 150 分，时间 120 分钟．注意㨌项：

1．答题前，考生务必将自己的姓名，准考证号，座位号，学校，班级等考生信息填写在答题卡上。

2．作答选择题时，选出每个小题答案后，用 $2 B$ 铅笔把答题卡上对应题目的答案信息点涂黑。如需改动，用橡皮擦干净后，再选涂其它答案，写在本试卷上无效。

3．非选择题必须用黑色字迹签字笔作答，答案必须写在答题卡各题指定的位置上，写在本试卷上无效。
一，选搎题：本题共 12 小题，每小题 5 分，共 60 分．在每小题给出的四个选项中，只有一项符合题目要求。

1．已知集合 $M=\left\{x \mid x^{2}-2 x<0\right\}, N=\{-2,-1,0,1,2\}$ ，则 $M \cap N=(\quad)$
A．\varnothing
B．$\{1\}$
C．$\{0,1\}$
D．$\{-1,0,1\}$

2．设 $6+x+(3-2 x) i=3+(y+5) i$（ i 为虚数单位），其中 x, y 是实数，则 $|x+y i|$ 等于（ ）
A． 5
B．$\sqrt{13}$
C． $2 / \sqrt{2}$
D． 2

3．平面向量 \vec{a} 与 \vec{b} 的夹角为 $\frac{\pi}{3}, \vec{a}=(2,0),|\vec{b}|=1$ ，则 $|\vec{a}-2 \vec{b}|=$（）
A． $2 \sqrt{3}$
B．$\sqrt{6}$
C． 0
D． 2

4．不透明的箱子中有形状，大小都相同的 5 个球，其中 2 个白球； 3 个黄球。现从该箱子中随机摸出 2 个球，则这 2 个球颜色不同的概率为（
A．$\frac{3}{10}$
B．$\frac{2}{5}$
C．$\frac{3}{5}$
D．$\frac{7}{10}$

5．若抛物线 $y^{2}=4 x$ 上的点 M 到焦点的距离为 10 ，则 M 点到 y 轴的距离是
A． 6
B． 8
C． 9
D． 10

6．已知函数 $f(x)=\cos (2 \omega x+\varphi)\left(\omega>0,|\varphi|<\frac{\pi}{2}\right)$ 的最小正周期为 π ，将其图象向右平移 $\frac{\pi}{6}$ 个单位后得函数 $g(x)=\cos 2 x$ 的图象，则 φ 的值为 $($
A．$\frac{\pi}{3}$
B．$\frac{\pi}{6}$
C．$-\frac{\pi}{3}$
D．$-\frac{\pi}{6}$

7．等比数列 $\left\{a_{n}\right\}$ 的前 n 项和为 S_{n} ，公比为 q ，若 $S_{6}=9 S_{3}, S_{5}=62$ ，则 $a_{1}=$

A．$\sqrt{2}$
B． 2
C．$\sqrt{5}$
D． 3

8．函数 $f(x)=(x+a) \mathrm{e}^{x}$ 的图象在 $x=1$ 和 $x=-1$ 处的切线相互垂直，则 $a=1$
A．-1
B． 0
C． 1
D． 2

9．在长方体 $A B C D-A_{1} B_{1} C_{1} D_{1}$ 中，$A B=2, B C=1, A A_{1}=1, E, F$ 分别为棱 $A_{1} B_{1}$ ， $C_{1} D_{1}$ 的中点，则异面直线 $A F$ 与 $B E$ 所成角的余弦值为 $($
A． 0
B．$\frac{\sqrt{5}}{5}$
C．$\frac{\sqrt{3}}{2}$
D．$\frac{2 \sqrt{5}}{5}$

10．双曲线 $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1(a>0, b>0)$ 的离心率为 2 ，则该双曲线的渐近线与圆 $(x-2)^{2}+y^{2}=3$ 的公共点的个数为
A． 1
B． 2
C． 4
D． 0

11．关于圆周率 π ，数学发展史上出现过许多有创意的求法，如著名的普丰实验和查理斯实验．受其启发，我们也可以通过设计下面的实验来估计 π 的值：先请 120 名同学每人随机写下一个 x, y 都小于 1 的正实数对 (x, y) ，再统计其中 x, y 能与 1 构成钝角三角形三边的数对 (x, y) 的个数 m ，最后根据统计个数 m 估计 π 的值．如果统计结果是 $m=34$ ，那么可以估计 π 的值为（
A．$\frac{23}{7}$
B．$\frac{47}{15}$
C．$\frac{17}{15}$
D．$\frac{53}{17}$

12．已知函数 $f(x)=\left|\ln \left(\sqrt{x^{2}+1}-x\right)\right|$ ，设 $a=f\left(\log _{3} 0.2\right), b=f\left(3^{-0.2}\right), c=f\left(-3^{1.1}\right)$ ，则（
A．$a>b>c$
B．$b>a>c$
C．$c>b>a$
D．$c>a>b$

二．壊空题：本题共 4 小题，每小题 5 分，共 20 分．
13．已知 $x>\frac{5}{4}$ ，则函数 $y=4 x+\frac{1}{4 x-5}$ 的最小值为 \qquad ．
14．设函数 $f(x)=\left\{\begin{array}{ll}x^{2}+3 x & (x \geq 0) \\ f(x+2) & (x<0)\end{array}\right.$ ，则 $f(-3)=$ \qquad
15．等差数列 $\left\{a_{n}\right\}$ 的前 n 项和为 S_{n} ，若 $a_{4}+a_{5}=25, S_{6}=57$ ，则 $\left\{a_{n}\right\}$ 的公差为 \qquad ．
16．已知球的直径 $D C=4, A, ~ B$ 是该球面上的两点，$\angle A D C=\angle B D C=\frac{\pi}{6}$ ，则三棱雉 $A-B C D$ 的体积最大值是 \qquad ．
三．解答题：共70分。解答应写出文字说明，证明过程或演算步骤。第17～21题为必考题，每个试题考生都必须作答。第22，23题为选考题，考生根据要求作答。
（一）必考题：共60分。
1．7．（本小题满分 12 分）
在 $\triangle A B C$ 中，角 $A B, C$ 所对的边分别为 a, b, c ，满足 $\frac{a-b+c}{c}=\frac{b}{a+b-c}$ ．
（1）求角 A ；
（2）若 $\triangle A B C$ 的外接圆半径为 1 ，求 $\triangle A B C$ 的面积 S 的最大值．

18．（本小题满分 12 分）
在四棱雉 $P-A B C D$ 中， $\bar{P} A \perp$ 平面 $A \overline{C C D}, ~ \triangle A B \bar{C}$ 是正三角形，$A C$ 与 $B D$ 的交 ${ }^{\top}$点为 M ，又 $P A=A B=4, A D=C D$ ，点 N 是 $C D$ 中点．
（1）求证：$M N / /$ 平面 $P A D$ ；
（2）求点 M 到平面 $P B C$ 的距离．

19．（本小题满分 12 分）
某品牌汽车 4 S 店，对该品牌旗下的 A 型，B 型，C 型汽车进行维修保养，汽车 $4 S$ 店记录了 100 辆该品牌三种类型汽车的维修情况，整理得下表：

车型	A 型	B 型	C 型
频数	20	40	40

假设该店采用分层抽样的方法从上述维修的 100 辆该品牌三种类型汽车中随机取 10辆进行问卷回访。
（1）求 A 型， B 型， C 型各车型汽车抽取的数目；
（2）维修结束后这 100 辆汽车的司机采用＂100分制＂打分的方式表示对 4 S 店的满意度，按照大于等于 80 为优秀，小于 80 为合格，得到如下列联表：

	优秀	合格	合计
男司机	10	38	48
女司机	25	27	52
合计	35	65	100

问能否在犯锴误概率不超过 0.01 的前提下认为司机对 4 S 店满意度与性别有关系？访说明原因。
（参考公式：$K^{2}=\frac{n(a d-b c)^{2}}{(a+b)(c+d)(a+c)(b+d)}$ ）

附表：

$P\left(K^{2} \geq k\right)$	0.100	0.050	0.010	0.001
k	2.706	3.841	6.635	10.828

第 4 页，共 6 页
数学试题（义科）

20．（本小题满分 12 ；
已知函数 $f(x)=\frac{\ln x}{x}$ ．
（1）求 $f(x)$ 的最大值；
（2）设实数 $a>0$ ，求函数 $F(x)=a f(x)$ 在 $[a, 2 a]$ 上的最小值．

21．（本小题满分 12 分）
已知椭圆 $C: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1(a>b>0)$ 的左顶点为 A ，右焦点为 $F_{2}(2,0)$ ，点 $B(2,-\sqrt{2})$ 在椭圆 C 上．
（1）求椭圆 C 的方程；
（2）直线 $y=k x(k \neq 0)$ 与椭圆 C 交于 E, F 两点，直线 $A E, A F$ 分别与 y 轴交于 M, N ．当 k 变化时，在 x 轴上是否存在点 P ，使得 $\angle M P N$ 为直角。若存在，求出点 P的坐标；若不存在，请说明理由．
（二）选考题：共10分。请考生在第22，23题中任选一题作答。如果多做，则按所做 t第一题计分。答题时请在答题卷中写清题号并将相应信息点涂黑。

22．（本小题满分 10 分）［选修 4－4：坐标系与参数方程］

为极点，x 轴正半轴为极轴的极坐标系中，曲线 C_{2} 的极坐标方程为 $\rho=4 \cos \theta$ ．
（1）写出 C_{1} 的普通方程和 C_{2} 的直角坐标方程；
（2）若 C_{1} 与 C_{2} 相交于 A, B 两点，求 $\triangle O A B$ 的面积．

第 5 页，共 6 页

23．（本小题满分 10 分）［选修 4－5：不等式选讲］
已知 $f(x)=|x+1|+|a x-a+1|$ ．
（1）当 $a=1$ 时，求不等式 $f(x) \geq 3$ 的解集；
（2）若 $x \geq 1$ 时，不等式 $f(x) \geq x+2$ 恒成立，求 a 的取值范围．

